廣告廣告
  加入我的最愛 設為首頁 風格修改
首頁 首尾
 手機版   訂閱   地圖  簡體 
您是第 8628 個閱讀者
 
<<   1   2   3  下頁 >>(共 3 頁)
發表文章 發表投票 回覆文章
  可列印版   加為IE收藏   收藏主題   上一主題 | 下一主題   
albee543
數位造型
個人文章 個人相簿 個人日記 個人地圖
初露鋒芒
級別: 初露鋒芒 該用戶目前不上站
推文 x17 鮮花 x155
分享: 轉寄此文章 Facebook Plurk Twitter 複製連結到剪貼簿 轉換為繁體 轉換為簡體 載入圖片
推文 x0
[學習] 大家知道1+1=2原理嗎?我證明給你看!
We will proceed as follows: we define
0 = {}.

In order to define "1," we must fix a set with exactly one element;
thus

1 = {0}.

Continuing in fashion, we define

2 = {0,1},
3 = {0,1,2},
4 = {0,1,2,3}, etc.

The reader should note that 0 = {}, 1 = {{}}, 2 = {{},{{}}}, etc.
Our natural numbers are constructions beginning with the empty set.

The preceding definitions can be restarted, a little more precisely,
as follows. If A is a set, we define the successor of A to be the set
A^+, given by

A^+ = A ∪ {A}.

Thus, A^+ is obtained by adjoining to A exactly one new element,
namely the element A. Now we define

0 = {},
1 = 0^+,
2 = 1^+,
3 = 2^+, etc.

現在問題來了, 有一個 set 是包括所有 natural numbers 的嗎 ? (甚至問
一個 class). 這邊先定義一個名詞, 接著在引 A9, 我們就可以造出一個 set
包括所有的 natural numbers.

A set A is called a successor set if it has the following properties:

i) {} [- A.
ii) If X [- A, then X^+ [- A.

It is clear that any successor set necessarily includes all the natural
numbers. Motivated bt this observation, we introduce the following
important axiom.

A9 (Axiom of Infinity). There exist a successor set.

As we have noted, every successor set includes all the natural numbers;
thus it would make sense to define the "set of the natural numbera" to
be the smallest successor set. Now it is easy to verify that any
intersection of successor sets is a successor set; in particular, the
intersection of all the successor sets is a successor set (it is obviously
the smallest successor set). Thus, we are led naturally to the following
definition.


6.1 Definition By the set of the natural numbers we mean the intersection
of all the successor sets. The set of the natural numbers is designated by
the symbol ω; every element of ω is called a natural number.
6.2 Theorem For each n [- ω, n^+≠0.
Proof. By definition, n^+ = n ∪ {n}; thus n [- n^+ for each natural
number n; but 0 is the empty set, hence 0 cannot be n^+ for any n.

6.3 Theorem (Mathematical Induction). Let X be a subset of ω; suppose
X has the following properties:

i) 0 [- X.
ii) If n [- X, then n^+ [- X.

Then X = ω.

Proof. Conditions (i) and (ii) imply that X is a successor set. By 6.1
ω is a subset of every successor set; thus ω 包含於 X. But X 包含於 ω;
so X = ω.


6.4 Lemma Let m and natural numbers; if m [- n^+, then m [- n or m = n.
Proof. By definition, n^+ = n ∪ {n}; thus, if m [- n^+, then m [- n
or m [- {n}; but {n} is a singleton, so m [- {n} iff m = n.
6.5 Definition A set A is called transitive if, for such
x [- A, x 包含於 A.

6.6 Lemma Every natural number is a transitive set.
Proof. Let X be the set of all the elements of ω which
are transitive sets; we will prove, using mathematical induction
(Theorem 6.3), that X = ω; it will follow that every natural
number is a transitive set.

i) 0 [- X, for if 0 were not a transitive set, this would mean
that 存在 y [- 0 such that y is not a subset of 0; but this is
absurd, since 0 = {}.
ii) Now suppose that n [- X; we will show that n^+ is a transitive
set; that is, assuming that n is a transitive set, we will show
that n^+ is a transitive set. Let m [- n^+; by 6.4 m [- n
or m = n. If m [- n, then (because n is transitive) m 包含於 n;
but n 包含於 n^+, so m 包含於 n^+. If n = m, then (because n
包含於 n^+) m 包含於 n^+; thus in either case, m 包含於 n^+, so
n^+ [- X. It folloes by 6.3 that X = ω.

6.7 Theorem Let n and m be natural numbers. If n^+ = m^+, then n = m.
Proof. Suppose n^+ = m^+; now n [- n^+, hence n [- m^+;
thus by 6.4 n [- m or n = m. By the very same argument,
m [- n or m = n. If n = m, the theorem is proved. Now
suppose n≠m; then n [- m and m [- n. Thus by 6.5 and 6.6,
n 包含於 m and m 包含於 n, hence n = m.
6.8 Recursion Theorem
Let A be a set, c a fixed element of A, and f a function from
A to A. Then there exists a unique function γ: ω -> A such
that

I. γ(0) = c, and
II. γ(n^+) = f(γ(n)), 對任意的 n [- ω.

Proof. First, we will establish the existence of γ. It should
be carefully noted that γ is a set of ordered pairs which is a
function and satisfies Conditions I and II. More specifically,
γ is a subset of ω╳A with the following four properties:

1) 對任意的 n [- ω, 存在 x [- A s.t. (n,x) [- γ.
2) If (n,x_1) [- γ and (n,x_2) [- γ, then x_1 = x_2.
3) (0,c) [- γ.
4) If (n,x) [- γ, then (n^+,f(x)) [- γ.

Properties (1) and (2) express the fact that γ is a function from
ω to A, while properties (3) and (4) are clearly equivalent to
I and II. We will now construct a graph γ with these four properties.

Let

Λ = { G | G 包含於 ω╳A and G satisfies (3) and (4) };

Λ is nonempty, because ω╳A [- Λ. It is easy to see that any
intersection of elements of Λ is an element of Λ; in particular,

γ = ∩ G
G[-Λ

is an element of Λ. We proceed to show that γ is the function
we require.

By construction, γ satisfies (3) and (4), so it remains only to
show that (1) and (2) hold.

1) It will be shown by induction that domγ = ω, which clearly
implies (1). By (3), (0,c) [- γ; now suppose n [- domγ. Then
存在 x [- A 使得 (n,x) [-γ; by (4), then, (n^+,f(x)) [- γ,
so n^+ [- domγ. Thus, by Theorem 6.3 domγ = ω.

2) Let

N = { n [- ω | (n,x) [- γ for no more than one x [- A }.

It will be shown by induction that N = ω. To prove that 0 [- N,
we first assume the contrary; that is, we assume that (0,c) [- γ
and (0,d) [- γ where c≠d. Let γ^* = γ - {(0,d)}; certainly
γ^* satisfies (3); to show that γ^* satisfies (4), suppose that
(n,x) [- γ^*. Then (n,x) [- γ, so (n^+,f(x)) [- γ; but n^+≠0
(Theorem 6.2), so (n^+,f(x))≠(0,d), and consequently (n^+,f(x)) [-
γ^*. We conclude that γ^* satisfies (4), so γ^* [- Λ; but γ is
the intersection of all elements of Λ, so γ 包含於 γ^*. This is
impossible, hence 0 [- N. Next, we assume that n [- N and prove
that n^+ [- N. To do so, we first assume the contrary -- that is,
we suppose that (n,x) [- γ, (n^+,f(x)) [- γ, and (n^+,u) [- γ
where u≠f(x). Let γ^。 = γ - {(n^+,u)}; γ^。 satisfies (3) because
(n^+,u)≠(0,c) (indeed, n^+≠0 by Theorem 6.2). To show that γ^。
satisfies (4), suppose (m,v) [- γ^。; then (m,v) [- γ, so
(m^+,f(v)) [- γ. Now we consider two cases, according as
(a) m^+≠n^+ or (b) m^+ = n^+.

a) m^+≠n^+. Then (m^+,f(v))≠(n^+,u), so (m^+,f(v)) [- γ^。.
b) m^+ = n^+. Then m = n by 6.7, so (m,v) = (n,v); but n [- N,
so (n,x) [- γ for no more than one x [- A; it follows that v = x,
and so

(m^+,f(v)) = (n^+,f(x)) [- γ^。.

Thus, in either case (a) or (b), (m^+,f(v)) [- γ^。, thus, γ^。
satisfies Condition (4), so γ^。[- Λ. But γ is the intersection
of all the elements of Λ, so γ 包含於 γ^。; this is impossible,
so we conclude that n^+ [- N. Thus N = ω.
Finally, we will prove that γ is unique. Let γ and γ' be functions,
from ω to A which satisfy I and II. We will prove by induction that
γ = γ'. Let

M = { n [- ω | γ(n) = γ'(n) }.

Now γ(0) = c = γ'(0), so 0 [- M; next, suppose that n [- M. Then
γ(n^+) = f(γ(n)) = f(γ'(n)) = γ'(n^+),

hence n^+ [- M.

If m is a natural number, the recurion theorem guarantees the
existence of a unique function γ_m: ω -> ω defined by the
two Conditions

I. γ_m(0)=m,
II. γ_m(n^+) = [γ_m(n)]^+, 對任意的 n [- ω.

Addition of natural numbers is now defined as follows:

m + n = γ_m(n) for all m, n [- ω.


6.10 m + 0 = m,
m + n^+ = (m + n)^+.

6.11 Lemma n^+ = 1 + n, where 1 is defined to be 0^+

Proof. This can be proven by induction on n. If n = 0,
then we have

0^+ = 1 = 1 + 0
0^+ = 1 = 1 + 0

(this last equality follows from 6.10), hence the lemma holds
for n = 0. Now, assuming the lemma is true for n, let us show
that it holds for n^+:

1 + n^+ = (1 + n)^+ by 6.10
= (n^+)^+ by the hypothesis of induction.


把 n = 1 並且注意 2 = 1^+, 故 1 + 1 = 2



破解RapidShare下載前的讀秒限制 破解一小時間限制
下載手機鈴聲免錢方法
獻花 x2 回到頂端 [樓 主] From:台灣亞太線上 | Posted:2006-02-12 16:47 |
albee543
數位造型
個人文章 個人相簿 個人日記 個人地圖
初露鋒芒
級別: 初露鋒芒 該用戶目前不上站
推文 x17 鮮花 x155
分享: 轉寄此文章 Facebook Plurk Twitter 複製連結到剪貼簿 轉換為繁體 轉換為簡體 載入圖片

actually yo should say in one dimentional space, 1 + 1 = 2
and no one in earch yet proofed why 1 + 1 = 2
if you can do that probably u can get a nobel price

or

by defination, 1 + 1 = 2
basically you cannot proof it, its a defination.
I heard someone proofed 2 + 1 = 3, used like 1000 pages


破解RapidShare下載前的讀秒限制 破解一小時間限制
下載手機鈴聲免錢方法
獻花 x0 回到頂端 [1 樓] From:台灣亞太線上 | Posted:2006-02-12 16:49 |
circlemap
數位造型
個人文章 個人相簿 個人日記 個人地圖
小人物
級別: 小人物 該用戶目前不上站
推文 x0 鮮花 x53
分享: 轉寄此文章 Facebook Plurk Twitter 複製連結到剪貼簿 轉換為繁體 轉換為簡體 載入圖片

我是比較傾向於 1+1 = 2 乃是定義
凡定義就不被證明
所以 3 = (1+1) +1
4 = ((1+1)+1)+1

以後繼者的觀點來定義後於1的整數當然也行


獻花 x0 回到頂端 [2 樓] From:台灣中華電信 | Posted:2006-02-12 18:58 |
albee543
數位造型
個人文章 個人相簿 個人日記 個人地圖
初露鋒芒
級別: 初露鋒芒 該用戶目前不上站
推文 x17 鮮花 x155
分享: 轉寄此文章 Facebook Plurk Twitter 複製連結到剪貼簿 轉換為繁體 轉換為簡體 載入圖片

大學以下的我建議你們以定義來看就好^o^


破解RapidShare下載前的讀秒限制 破解一小時間限制
下載手機鈴聲免錢方法
獻花 x0 回到頂端 [3 樓] From:台灣亞太線上 | Posted:2006-02-12 20:08 |
chenweiyeh
個人文章 個人相簿 個人日記 個人地圖
小人物
級別: 小人物 該用戶目前不上站
推文 x0 鮮花 x64
分享: 轉寄此文章 Facebook Plurk Twitter 複製連結到剪貼簿 轉換為繁體 轉換為簡體 載入圖片

挖~有看沒有懂~
實在是太深澳了\


獻花 x0 回到頂端 [4 樓] From:台灣中華電信 | Posted:2006-02-12 20:31 |
夷希微
個人頭像
個人文章 個人相簿 個人日記 個人地圖
社區建設獎
知名人士
級別: 知名人士 該用戶目前不上站
推文 x13 鮮花 x1682
分享: 轉寄此文章 Facebook Plurk Twitter 複製連結到剪貼簿 轉換為繁體 轉換為簡體 載入圖片

天啊~都是英文 ^^" 表情
想看也看不懂說 :P 表情
1+1=2 的定理只在數學領域範圍中成立而已~
在其它領域裡就不成立了 ^_^
例如在電子邏輯的領域裡是 1+1=1 的 表情 表情
其它領域例:1 隻手 + 1 隻手 = 1 雙手
還有: 1 包麵粉 + 1 杯水 = 1 團麵團
另還有: 1 隻公雞 + 1 隻母雞 = 數不清的雞
.....
嘻嘻~我是來鬧場的~酸 表情 表情


視之不見,名曰夷;
聽之不聞,名曰希;
搏之不得,名曰微。
此三者不可致詰,故混而為一。

[截自老子道德經第十四章]
獻花 x2 回到頂端 [5 樓] From:韓國Hanaro電信 | Posted:2006-02-12 23:41 |
烏青 手機
個人文章 個人相簿 個人日記 個人地圖
社區建設獎
初露鋒芒
級別: 初露鋒芒 該用戶目前不上站
推文 x14 鮮花 x953
分享: 轉寄此文章 Facebook Plurk Twitter 複製連結到剪貼簿 轉換為繁體 轉換為簡體 載入圖片

下面是引用夷希微於2006-02-12 23:41發表的 :
天啊~都是英文 ^^" 表情
想看也看不懂說 :P 表情
1+1=2 的定理只在數學領域範圍中成立而已~
在其它領域裡就不成立了 ^_^
例如在電子邏輯的領域裡是 1+1=1 的 表情 表情
.......
哈哈哈... 我原本很正經的看待每一段話的解釋...
但是我不得不佩服妳.. 尤其當我看到你最後一段的時候.. 我大笑了 表情


獻花 x0 回到頂端 [6 樓] From:台灣中華電信 | Posted:2006-02-13 00:30 |
albee543
數位造型
個人文章 個人相簿 個人日記 個人地圖
初露鋒芒
級別: 初露鋒芒 該用戶目前不上站
推文 x17 鮮花 x155
分享: 轉寄此文章 Facebook Plurk Twitter 複製連結到剪貼簿 轉換為繁體 轉換為簡體 載入圖片

下面是引用夷希微於2006-02-12 23:41發表的 :
天啊~都是英文 ^^" 表情
想看也看不懂說 :P 表情
1+1=2 的定理只在數學領域範圍中成立而已~
在其它領域裡就不成立了 ^_^
例如在電子邏輯的領域裡是 1+1=1 的 表情 表情
.......

哈哈!!分明就來扎場的
不知道那是什麼理論 表情


破解RapidShare下載前的讀秒限制 破解一小時間限制
下載手機鈴聲免錢方法
獻花 x0 回到頂端 [7 樓] From:台灣亞太線上 | Posted:2006-02-13 00:40 |
rt8001 手機 會員卡
個人文章 個人相簿 個人日記 個人地圖
小有名氣
級別: 小有名氣 該用戶目前不上站
推文 x5 鮮花 x290
分享: 轉寄此文章 Facebook Plurk Twitter 複製連結到剪貼簿 轉換為繁體 轉換為簡體 載入圖片

下面是引用夷希微於2006-02-12 23:41發表的 :
天啊~都是英文 ^^" 表情
想看也看不懂說 :P 表情
1+1=2 的定理只在數學領域範圍中成立而已~
在其它領域裡就不成立了 ^_^
例如在電子邏輯的領域裡是 1+1=1 的 表情 表情
.......
天阿~~大大你該不會是傳說中的kuso達人呢? 表情


點下面的連結就是對我最大的回饋,並不花你半毛錢
http://bbs.mychat.to/index.php?u=200012
請支持小弟開版(有關社區管理或社區生活上的相關問題回覆)
http://bbs.mychat.to/read.php?tid=595610
獻花 x0 回到頂端 [8 樓] From:台灣中華電信 | Posted:2006-02-13 02:56 |
aa 手機 會員卡 葫蘆墩家族
個人文章 個人相簿 個人日記 個人地圖 個人商品
特殊貢獻獎 社區建設獎
頭銜:            
站長
級別: 站長 該用戶目前不上站
推文 x1964 鮮花 x5260
分享: 轉寄此文章 Facebook Plurk Twitter 複製連結到剪貼簿 轉換為繁體 轉換為簡體 載入圖片

以前當兵時,有一個學長他是唸數學研究所的,他問我 0 的定義
我說 0 就是 0 啊,還要怎麼定義,他就拿了一本數學的書,好厚的一本啊(大概5公分厚)
他說那本書就是在說明 0 的定義,看了都傻了.. 表情


獻花 x0 回到頂端 [9 樓] From:台灣新世紀資通 | Posted:2006-02-13 16:54 |

<<   1   2   3  下頁 >>(共 3 頁)
首頁  發表文章 發表投票 回覆文章
Powered by PHPWind v1.3.6
Copyright © 2003-04 PHPWind
Processed in 0.063986 second(s),query:16 Gzip disabled
本站由 瀛睿律師事務所 擔任常年法律顧問 | 免責聲明 | 本網站已依台灣網站內容分級規定處理 | 連絡我們 | 訪客留言